

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» (УрФУ) Институт радиоэлектроники и информационных технологий – РтФ Школа бакалавриата

> Оценка работы_____ Преподаватель_____

Отчет по лабораторной работе № 2 по дисциплине «Физические основы микро- и наноэлектроники» Тема: «ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК И ПАРАМЕТРОВ ЭЛЕКТРОННО-ДЫРОЧНЫХ ПЕРЕХОДОВ»

Студент:		 ФИО	Нухкадиев
Н.Р. Группа:	<u>РИЗ - 121105у</u>		
Преподава	атель:	ФИО Ду	онаков А.А.

Екатеринбург

1 ЦЕЛЬ ЛАБОРАТОРНОЙ РАБОТЫ

Ознакомиться с физическими основами работы электронно-дырочных переходов, приобрести навыки экспериментального исследования электрических пробоев переходов, исследовать влияние материала полупроводника и температуры окружающей среды на характеристики и параметры пробоев электронно-дырочных переходов.

2 Типовые параметры исследуемых электронно-дырочных переходов

	L.
Параметры	KC156A
Напряжение стабилизации номинальное при (<i>I</i> _{ст,} мА),В	5,6
	(10)
Разброс напряжения стабилизации	<u>+10%</u>
Максимальный ток стабилизации, мА	55
Минимальный ток стабилизации, мА	3
Прямое напряжение при $I_{\Pi P}$ =50мА (не более), В	1
Постоянный обратный ток при <i>U</i> _{ОБР} =0,7 <i>U</i> _{СТНОМ} , мА	1
Постоянный прямой ток, мА	
Дифференциальное сопротивление (Іст,мА), Ом	46 (10)
Температурный коэффициент напряжения стабилизации,	+0.05
%/град	<u>+</u> 0,03
Рассеиваемая мощность, мВт	300

Таблица 1.1 – Параметры стабилитрона с полевым пробоем.

Таблица 1.2 – Параметры стабилитрона с лавинным пробоем.

2 СХЕМЫ И ЗАМЕРЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

При экспериментальных исследованиях электронно-дырочных переходов в режиме электрического пробоя снимаются вольт-амперные характеристики разных значений рабочих температур. Причем ДЛЯ лабораторная установка позволяет исследовать электронно-дырочные переходы с полевым и лавинным пробоем, исследовать прямые и обратные ветви вольт-амперной характеристики. При снятии прямой ветви ВАХ электронно-дырочного перехода (рис. 1) задаются значениями прямого тока И измеряют напряжение на электронно-дырочном переходе, соответствующее заданному значению тока. Напряжение регулируется с помощью источника входного напряжения, которое может изменяться в диапазоне от 0 до 5 В.

Рис. 1. Схема лабораторной установки для снятия прямой ветви ВАХ электронно-дырочного перехода.

При снятии обратной ветви ВАХ электронно-дырочного перехода, работающего в режиме электрического пробоя, (рис. 2) между источником входного напряжения и стабилитроном включается резистор R_{orp} , значение которого определяется наибольшим входным напряжением U_{BX} макс, максимальным током стабилизации I_{CT} макс. При проведении

экспериментальных исследований необходимо задаваться значениями обратного тока электронно-дырочного перехода, при этом измеряя значения напряжения на переходе.

Рис.2. Схема лабораторной установки для снятия обратной ветви ВАХ перехода, работающего в режиме электрического пробоя.

Миллиамперметр (мА) измеряет ток, протекающий через обратно смещённый электронно-дырочный переход, вольтметр (V1) служит для измерения напряжения на переходе, вольтметр(V) – для измерения напряжения, получаемого от источника напряжения, а R_{orp} . – резистор, величина сопротивления которого определяет исходное положение рабочей точки на вольт–амперной характеристике электронно–дырочного перехода.

Таблица 2.1 – Д814 стабилитрон с лавинным пробоем: прямое включение.

<i>I</i> _{прям} , мА		0	5	10	30	50
U _{прям} , В T ₁ =20, С	при	0	0,64	0,66	0,74	0,78
U _{прям} , В T ₁ =70, С	при	0	0,6	0,62	0,70	0,74

Таблица 2.2 – Экспериментальные данные: обратное включение.

I _{обр} ,	1	2	3	10	16	22	24
мА							I _{ст макс}
$U_{\text{odp}}, \mathbf{B}$	8,23	13,4	13,49	13,64	13,7	13,82	13,9
$T_1=20^{\circ}$		0			3		
C							
<i>U</i> _{обр} , В	13,67	13,7	13,8	13,92	13,9	14,04	14,08
$T_2 = 70^{\circ}$		2			9		
C							

Таблица 2.3 – КС156А стабилитрон с полевым пробоем: прямое включение.

I _{прям} , мА	0	5	10	30	50
U _{прям} , В при T ₁ =20, С	0	0,66	0,69	0,72	0,78
U _{прям} , В при T ₁ =70, С	0	0,61	0,63	0,65	0,73

Таблица 2.4 – Экспериментальные данные: обратное включение.

<i>I</i> _{обр} , мА	1	4	10	20	30	39	47	I _{ст макс}
U _{обр} , В Т ₁ =20С	4,73	5,39	5,69	5,84	5,86	5,89	5,91	5,93
U _{обр} , В Т ₂ =70° С	4,61	5,28	5,60	5,83	5,84	5,93	5,96	5,99

3 Графики вольт амперных характеристик исследуемых

электронно-дырочных переходов

Рис. 3. ВАХ прямой ветви стабилитрона Д814Д

Рис. 4. ВАХ обратной ветви стабилитрона Д814Д

Рис. 5. ВАХ прямой ветви стабилитрона КС156А

Рис. 6. ВАХ обратной ветви стабилитрона КС156А

З РАССЧЁТНАЯ ЧАСТЬ

1. Для всех исследуемых электронно-дырочных переходов, предназначенных для работы в режиме электрического пробоя, определить значения $I_{\text{ст макс}}$ и $I_{\text{ст мин}}$ Номинальный ток стабилизации перехода определить по формуле $I_{\text{ст ном}} = \frac{I_{\text{ст макс}} + I_{\text{ст мин}}}{2}$.

аблица 5.1 ТОКИ	стаонлизации	(wiake. n winn.).	
Прямая ветвь	Д814	I _{ст макс} =50 мА	I _{ст ном} =25 <i>мА</i>
_		$I_{\rm ct Muh} = 0 MA$	
	КС156А	$I_{\rm ct make} = 50 mA$	I _{ст ном} =25 <i>мА</i>

Таблица 3.1 – Токи стабилизации (Макс. и Мин.).

		$I_{\rm ct Muh} = 0 MA$	
Обратная ветвь	Д814	I _{ст макс} =24 <i>мА</i>	I _{ст ном} =12 , 5 <i>мА</i>
		$I_{\rm ct muh} = 1 MA$	
	КС156А	I _{ст макс} =55 мА	I _{ст ном} =28 <i>мА</i>
		$I_{\rm ct muh} = 1 MA$	

2. Для всех исследуемых переходов, используя прямые ветви характеристик, снятые при комнатной и повышенной температурах, определить значения температурного коэффициента напряжения прямой ветви ТК $H_{npsm} = \frac{\Delta U_{npsm}}{\Delta T}$ при $I_{npsm} = I_{ct \text{ ном.}}$

Таблица 3.2 – Расчёт прямого температурного коэффициента напряжения.

Д814	20 C	TK H _{прям} = $\frac{\Delta U_{\text{прям}}}{\Delta T} = \frac{(0, 78 - 0, 74)B}{50C} = 0,0008 B/C$
	70 C	TK H _{прям} = $\frac{\Delta U_{\text{прям}}}{\Delta T} = \frac{(0, 74 - 0, 70)B}{50C} = 0,0008 B/C$
КС156А	20 C	TK H _{прям} = $\frac{\Delta U_{\text{прям}}}{\Delta T}$ = $\frac{(0, 78 - 0, 72)B}{50C}$ = 0,0012B/C
	70 C	TK H _{прям} = $\frac{\Delta U_{прям}}{\Delta T} = \frac{(0, 73 - 0, 65)B}{50C} = 0,0016B/C$

3. Для всех исследуемых переходов, используя обратные ветви вольт– амперных характеристик, снятые при различных температурах, определить значение температурного коэффициента напряжения пробоя ТК $H_{npo6} = \frac{\Delta U'_{o6p}}{\Delta T}$ при $I_{o6p} = I_{ct HOM}$.

Д814	20 C	TK H _{inpo6} = $\frac{\Delta U'_{o \delta p}}{\Delta T} = \frac{(13, 9 - 13, 73)B}{50C} = 0,0034 B/C$
	70 C	TK H _{npo6} = $\frac{\Delta U'_{o6p}}{\Delta T} = \frac{(14, 08 - 13, 99)B}{50C} = 0,0018 B/C$
KC156A	20 C	TK H _{npo6} = $\frac{\Delta U'_{o6p}}{\Delta T}$ = $\frac{(5, 93-5, 86)B}{50C}$ = 0,0014 B/C
	70 C	TK H _{npo5} = $\frac{\Delta U'_{o5p}}{\Delta T} = \frac{(5, 99-5, 84)B}{50C} = 0,003 B/C$

Таблица 3.3 – Расчёт температурного коэффициента напряжения пробоя.

4. Для всех исследуемых переходов по вольт-амперным характеристикам, снятым при комнатной температуре, определить для области пробоя:

а) дифференциальное сопротивление обратно смещённого перехода

 $r_{\rm ct} = \frac{\Delta U_{\rm ofp}}{I_{\rm ct \ Makc} - I_{\rm ct \ Muh}}$, где $\Delta U_{\rm ofp}$ соответствует изменениям тока от $I_{\rm ct \ Makc}$ до $I_{\rm ct \ Muh}$;

Таблица 3.4 – Расчёт дифференциального сопротивления обратно смещённого перехода.

Прямая ветвь	Д814	$r_{\rm ct} = \frac{\Delta U_{\rm np}}{I_{\rm ct \ Makc} - I_{\rm ct \ MuH}} = \frac{(0, 78 - 0, 74)}{50 \ MA} = 0, 8 \ OM$
	КС156А	$r_{\rm ct} = \frac{\Delta U_{\rm np}}{I_{\rm ct \ Makc} - I_{\rm ct \ MuH}} = \frac{(0, 78 - 0, 72)}{50 \ MA} = 1, 2 \ OM$
Обратная ветвь	Д814	$r_{\rm ct} = \frac{\Delta U_{\rm obp}}{I_{\rm ct make} - I_{\rm ct muh}} = \frac{(13, 9 - 13, 73)}{12, 5 \text{MA}} = 1,360\text{M}$
	КС156А	$r_{\rm ct} = \frac{\Delta U_{\rm obp}}{I_{\rm ct \ Makc} - I_{\rm ct \ MuH}} = \frac{(5, 93 - 5, 86)}{28 MA} = 2,5 OM$

б) статическое сопротивление перехода $R_0 = U_{\text{ст ном}} / I_{\text{ст ном}}$.

Таблица З	.5 – Расчёт	статического	сопротивлени	ия перехода
-----------	-------------	--------------	--------------	-------------

Прямая ветвь	Д814	$R_0 = \frac{U_{\text{ct HOM}}}{I_{\text{ct HOM}}} = \frac{0,78 B}{50 \text{ mA}} = 15,60 \text{ m}$
	КС156А	$R_0 = \frac{U_{\text{ct HOM}}}{I_{\text{ct HOM}}} = \frac{0,77B}{50MA} = 15,4OM$
Обратная ветвь	Д814	$R_0 = \frac{U_{\rm ct HOM}}{I_{\rm ct HOM}} = \frac{13,9}{10MA} = 1390OM$

КС156А	$R_0 = \frac{U_{\text{ct HOM}}}{I_{\text{ct HOM}}} = \frac{5,93}{10 \text{ MA}} = 593 \text{ OM}$

5. Для переходов с различным механизмом пробоя определить сопротивление базы. Для этого рассчитать дифференциальное сопротивление перехода в области «больших» токов прямой ветви вольт-амперной характеристики: $r_{\delta} \approx r_{\text{диф}} = (U_2 - U_1)/(I_2 - I_1)$ где I_2 – максимальное измеренное значение прямого тока перехода; I_1 – составляет примерно 0,8 I_2 ; значения прямого напряжения U_2 , U_1 соответствуют значениям тока I_2 , I_1 .

Прямая ветвь	Д814, 20 C	$r_{\delta} \approx \frac{(U_2 - U_1)}{(I_2 - I_1)} = \frac{(0, 78 - 0, 74)B}{(50 - 30)MA} = 2OM$
	Д814, 70 С	$r_{\delta} \approx \frac{(U_2 - U_1)}{(I_2 - I_1)} = \frac{(0, 75 - 0, 70)B}{(50 - 30)MA} = 2, 5OM$
	KC156A, 20 C	$r_{\delta} \approx \frac{(U_2 - U_1)}{(I_2 - I_1)} = \frac{(0, 78 - 0, 72)B}{(50 - 30)MA} = 3OM$
	КС156А, 70 С	$r_{\delta} \approx \frac{(U_2 - U_1)}{(I_2 - I_1)} = \frac{(0, 73 - 0, 65)B}{(50 - 30)MA} = 4OM$
Обратная ветвь	Д814, 20 C	$r_{\delta} \approx \frac{\left(U_{2} - U_{1}\right)}{\left(I_{2} - I_{1}\right)} = \frac{\left(13, 9 - 13, 73\right)B}{\left(25 - 16\right)MA} = 18 OM$
	Д814, 70 C	$r_{\delta} \approx \frac{(U_2 - U_1)}{(I_2 - I_1)} = \frac{(14, 08 - 13, 99)B}{(25 - 16)MA} = 10OM$
	KC156A, 20 C	$r_{\delta} \approx \frac{(U_2 - U_1)}{(I_2 - I_1)} = \frac{(5, 93 - 5, 86)B}{(55 - 30)MA} = 2,8OM$
	KC156A, 70 C	$r_{\delta} \approx \frac{(U_2 - U_1)}{(I_2 - I_1)} = \frac{(5, 99 - 5, 84)B}{(55 - 30)MA} = 6OM$

Таблица 3.6 – Расчёт дифференциального (базы) сопротивления.

4 ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

При повышении температуры стабилитрона до 70 С, при таких же значениях тока, то значения напряжения значительно меньше, чем при комнатной температуре.

Сопротивления (дифференциальное и статическое) у КС156А больше, чем у Д814. А сопротивление базы значительно больше. На прямой ветви

статическое сопротивление меньше у КС156А, чем у Д814. На обратной ветви статическое сопротивление Д814 больше, чем у КС156А.